
Pharmacological treatment and intervention

Learning objectives

• For each substance class, recognize its primary effects and pharmacological treatment options.

United States past month substance use among people aged 12 or older, 2020¹

Pharmacological treatments for alcohol use disorder

- FDA approved for alcohol use disorder
 - Disulfiram (Antabuse)
 - Naltrexone (Vivitrol, Revia)
 - Acamprosate (Campral)
- Off label use
 - Gabapentin (Neurontin)
 - Varenicline (Chantix)

Historical treatments for alcohol use disorder: conditioned reflex treatment

- Amphetamine administration to produce euphoria and obviate the need for alcohol^{2,3}
- Aversive conditioning or aversion therapy
 - Apomorphine administration with vodka⁴
 - Emetine administration paired with alcoholic drinks⁵
 - Remains a mainstay of several addiction treatment centers despite lack of evidence

Disulfiram (Antabuse)

- Inhibits acetaldehyde dehydrogenase (ALDH) causing acetaldehyde to build up in the liver when alcohol is metabolized
- Acetaldehyde causes flushing, nausea, vomiting, headaches, dizziness, tachycardia, hypotension, and dyspnea
- Relies on fear of negative consequences for its effect; no effect on cravings
- Open-label studies with supervision find it is safe and efficacious, but studies that are blinded or unsupervised show no efficacy⁶

Disulfiram (Antabuse) caveats

- The reaction to alcohol consumption can prove fatal^{7,8}
- FDA approval obtained in the 1950s
- Side effects: headaches, drowsiness, peripheral neuropathy, optic neuritis, hepatotoxicity, psychosis
- Contraindications: cardiovascular disease, hypertension, personality disorder, suicidality, psychosis, pregnancy, breastfeeding
- Not recommended for use in primary care settings

Naltrexone (Vivitrol, Revia)

- μ -opioid receptor antagonist (as is the active metabolite 6 β -naltrexol)
- Improves outcomes by about a third⁹
- Thought to reduce the pleasurable aspects of drinking

Naltrexone (Vivitrol, Revia) prescribing

- Opioid blockade persists 48-72 hours after the last dose. Stop opioids 7-10 days before initiation.
- Can be started while patients are still drinking or in withdrawal.
- Primarily renal excretion; not much interaction with liver enzymes.
- Start at 25 mg daily for 2 weeks, then 50 mg daily. Can go up to 100 mg.
- Available as a long-acting injection.
- Treatment duration should be at least 6 months. Can be used as-needed rather than daily.¹⁰

Acamprosate (Campral)

- Calcium salt of N-acetyl-homotaurine
- Mechanism is unclear and usually ascribed to modulation of glutamate and/or GABA¹¹
- Calcium may actually be the active ingredient¹²
- A preponderance of RCTs have shown efficacy in combination with psychosocial support
 - Abstinence rates improve from 23.4% to 36.1%¹³
 - Other drinking outcomes also improve¹⁴

Acamprosate (Campral) prescribing

- Renal excretion with no liver metabolism, so safe with liver disease
- Also does not interact with many medications
- Generally well-tolerated, but commonly causes GI problems
- Dose is 666 mg three times daily, or half that if the patient weighs less than 130 pounds.
- Recommended treatment duration is at least 6 months
- Seems to work best in anxious women with no family history and late onset of alcoholism¹⁵

Off label treatments for alcohol use disorder

- Gabapentin: anticonvulsant that stimulates GABA-B
 - Reduces EtOH consumption and improves sleep (Myrik 2009; Mason 2009; Mason 2014)
 - Can be combined with naltrexone for improved sleep outcomes (Anton 2011)
 - Higher doses (1800 mg daily) produce better outcomes
- Varenicline: decreases cravings and drinking in smokers and non-smokers¹⁶⁻¹⁹

Nicotiana tabacum (Tobacco)

- Native to Mesoamerica
- Used mainly for ceremonial purposes
- Introduced to Europe by Columbus
- Major cash crop in the early colonies
- Remains an important industry in the South

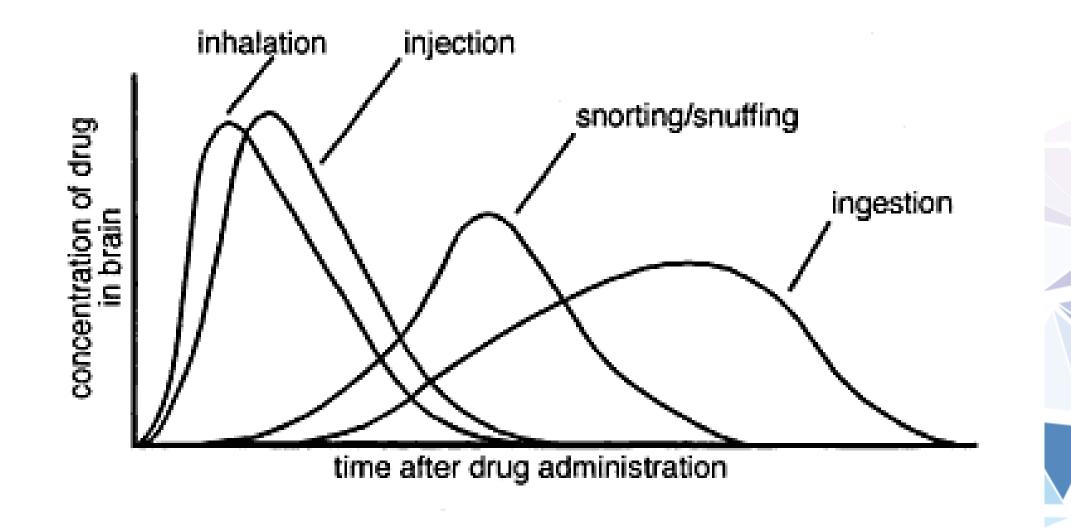
Systemic effects of nicotine

- Sympathomimetic: tachycardia, vasoconstriction, hypertension²⁰
- Reduces insulin sensitivity²¹
- May interfere with endothelial cell function²²
- Impairs wound healing due to vasoconstriction
- Not a direct carcinogen
- Is a neuroteratogen²³

Potential health benefits of nicotine

- Reduces malaria risk
- Increases survival if caught in a fire
- Smoking reduces risk of Parkinson's disease by ~70%²⁴
- Improves sensory gating by activating α 7 nAChRs²⁵
- Inhibits MAO A and B and releases dopamine, serotonin, and norepinephrine
- Desensitizes nAChRs, which has been postulated to stabilize mood

Pharmacological treatments for nicotine use disorder


- FDA approved for nicotine
 - Nicotine replacement therapy
 - Varenicline (Chantix)
 - Bupropion (Zyban, Wellbutrin)
- Approved in other countries
 - Cytisine (Tabex, Cravv)
- Off label use
 - Nortriptyline (Pamelor)

Nicotine replacement therapy

- Available in transdermal patches, gum, nose spray, inhalers, and lozenges
- Increases smoking cessation success rates from 10% to 22%²⁶
- Even better efficacy with a patch plus some form of immediate release²⁷
- Adverse effects are uncommon but can include GI upset, headaches, and local irritation

Addiction pharmacokinetics²⁸

Varenicline (Chantix)

- High-affinity nAChR partial agonist
- Increases smoking cessation success rates 2 to 3-fold²⁹
- Treat for at least 12 weeks; evidence that even longer treatment improves outcomes³⁰
- Combining with nicotine replacement may improve efficacy³¹
- Insomnia and vivid dreams are common, but reports of suicidality and other psychiatric side effects have not been substantiated³²

Cytisine (Tabex, Cravv)

- Alkaloid found in the SE European Laburnum golden rain tree
- Same mechanism as varenicline (which is actually a derivative).
- Initial reports indicated poor bioavailability, but subsequent studies have shown 4-fold increases in quit rates.³³
- Available in Europe (Tabex), but not the US

Bupropion (Wellbutrin)

- Norepinephrine and dopamine reuptake inhibitor
- Noncompetitive NAChR antagonist³⁴
- Increases quit rates ~2 fold
- Combining with nicotine replacement may improve efficacy³⁵
- May reduce weight gain associated with quitting³⁶

Nortriptyline (Pamelor)

- Tricyclic antidepressant
- Equivalent efficacy to bupropion³⁷
- Rarely used due to anticholinergic side effects and overdose risk

Electronic nicotine delivery systems

- Less toxins than conventional cigarettes³⁸ but often contain byproducts from metals, plastics, rubbers, ceramics, fibers, and foams³⁹
- Some RCTs have shown efficacy for smoking cessation, but this is offset by adolescent non-smokers who are introduced to nicotine through these products.⁴⁰

Treating nicotine use disorder during pregnancy and lactation

- Adverse effects of smoking: low birth weight, prematurity, miscarriage, decreased milk production, increased sudden infant death syndrome
- Known risks of nicotine⁴¹
- Probable risks of bupropion
- Paucity of data on varenicline and nortriptyline
- Don't forget non-pharmacological interventions
- Up to 45% quit "spontaneously"⁴²

Cannabis misinformation

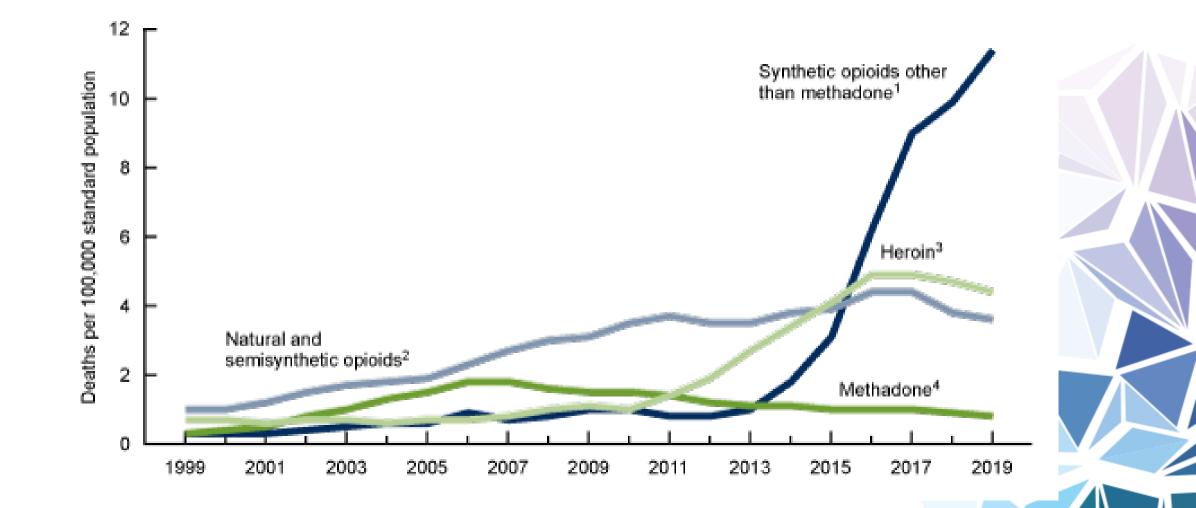
34 Medical Studies Proving Cannabis Cures Cancer

Federal Bureau of Narcotics 1935

Is Cannabis addictive?

- People readily respond to ads for treatment, and the majority do not abuse other drugs^{43, 44}
- ~25% of people admitted for any type of drug treatment reported cannabis as their primary drug
- Social impairment: loss of relationships, financial difficulty, impaired work performance, legal problems⁴⁵
- Psychiatric distress: somatization, depression, anxiety, irritability, paranoia
- Adverse consequences: guilt, procrastination, loss of self-confidence, memory loss, withdrawal
- Inability to quit with multiple failed attempts
- Lifetime prevalence of cannabis dependence is estimated at 6%, ~3 times higher than any other illicit drug⁴⁶

Treatments for Cannabis use disorder


- Psychotherapeutic interventions, including CBT, DBT, motivational enhancement, and contingency management are effective in reducing cannabis use⁴⁷
- Agonist therapy with dronabinol (synthetic THC)
 - 30-120 mg/day dose-dependently reduces withdrawal symptoms^{48,49}
 - Does not reduce self-administration or relapse^{50,51}
- Antidepressants have generally been unimpressive
- N-acetylcysteine 1200 mg twice daily ~doubled abstinence rates in adolescents in one RCT⁵²

Opioids

- Originally from the poppy plant
 - First cultivated in Mesopotamia
 - Initially used for euphoric mind-altering effects
 - Long history of medicinal use in the Old World
- Morphine isolated in 1806
- Heroin synthesized in 1898
- Several historical spikes of opioid dependence, e.g., the 1960s (Vietnam)
- Backlash in the 1980s among physicians; pain was undertreated

Age-adjusted rates of drug overdose deaths involving opioids, by type of opioid: United States, 1999–2019⁵³

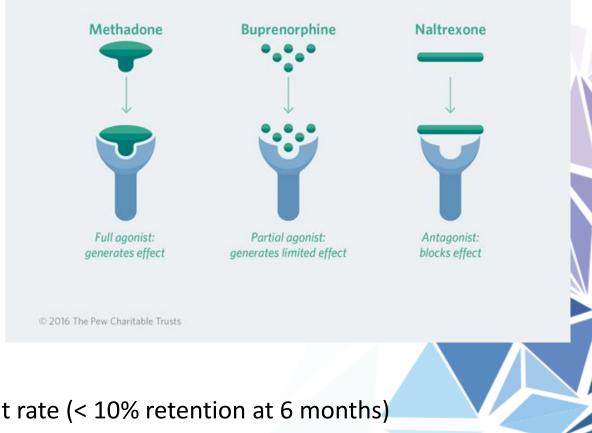
Rescue medication: Naloxone (Narcan)

How to Administer Narcan

Remove Narcan from box

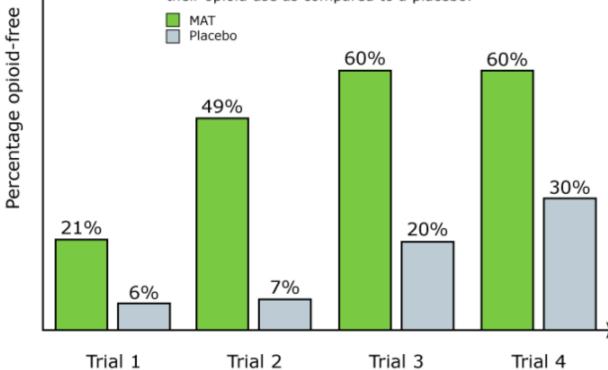
Hold with your thumb, first and middle finger

Insert tip into either nostril



Press the plunger firmly

If you suspect an overdose is occurring, **call 911.** Administer rescue breathing and naloxone (Narcan).


Medications for opioid use disorder (MOUD)

- Methadone- full μ-opioid agonist
 - Long half-life, high binding affinity
 - Became more widely used in the 1970s
 - Addictive, deadly in overdose
 - Strictly regulated due to public backlash
- Buprenorphine- partial µ-opioid agonist
 - High binding affinity
 - Usually combined with naloxone
 - Not lethal (unless combined with benzos)
 - Less severe restrictions
- Naltrexone- opioid antagonist
 - Not addictive
 - Effective for those who take it, but high drop out rate (< 10% retention at 6 months)

MOUD works⁵⁴

Clinical trials on methadone, buprenorphine, and naloxone show that twice as many patients have curbed their opioid use as compared to a placebo.

Treatments for psychostimulant use disorder

- Contingency management
- Antipsychotics don't work
- Antidepressants don't work
- Agonist therapy (ADHD only)

Challenges for addiction pharmacotherapy

- Poor compliance rates
- Large placebo effects
- Low rates of adoption among providers
 - Lack of training
 - Historical hostility toward medications in the treatment community⁵⁵
 - Misconceptions about the tractability of addiction to treatment
- Lack of interest from pharmaceutical industry
 - Low insurance coverage
 - Low prescription rates

Drug screens

- Consensual diagnostic test used to monitor treatment
- Testing schedules must be individualized (not one-size-fits-all)
- Beware of creating additional barriers to treatment
- Potential Benefits
 - Can improve communication
 - Provides objective data about patient's drug use
 - Provides an assessment of response to treatment
 - Advocate for patient or family in third party issues

Managing unexpected drug screen results

Do

- Use results as a conversation starter
- Send confirmatory testing
- Get to know your test as cut off values vary by manufacturer

Don't

- Ruin your relationship with the patient over a screening test
- Use screening tests to make clinical decisions

References (1 of 11)

- Substance Abuse and Mental Health Services Administration. (2021). Key substance use and mental health indicators in the United States: Results from the 2020 National Survey on Drug Use and Health (HHS Publication No. PEP21-07-01-003, NSDUH Series H-56). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Retrieved from https://www.samhsa.gov/data/
- 2. Bloomberg, W. (1939). Treatment of chronic alcoholism with amphetamine (Benzedrine) sulfate. *New England Journal of Medicine*, *220*(4), 129-135.
- 3. Reifenstein Jr, E. C., & Davidoff, E. (1940). The treatment of alcoholic psychoses with benzedrine sulfate in alcoholism with and without psychosis. *New York State Journal of Medicine*, *40*(February 15), 247-254.
- 4. Bowman, K. M., & Jellinek, E. M. (1941). Alcohol addiction and its treatment. *Quarterly Journal of Studies on Alcohol*, *2*(1), 98-176.
- 5. Voegtlin, W. L. (1940). The treatment of alcoholism by establishing a conditioned reflex. American Journal of the Medical Sciences.

References (2 of 11)

- Skinner, M. D., Lahmek, P., Pham, H., & Aubin, H. J. (2014). Disulfiram efficacy in the treatment of alcohol dependence: a meta-analysis. PloS one, 9(2), e87366. <u>https://doi.org/10.1371/journal.pone.0087366</u>
- 7. van Ieperen, L. (1984). Sudden death during disulfiram-ethanol reaction. South African Medical Journal= Suid-afrikaanse Tydskrif vir Geneeskunde, 66(5), 165-165.
- 8. Chick, J. (1999). Safety issues concerning the use of disulfiram in treating alcohol dependence. Drug Safety, 20(5), 427-435.
- 9. Rösner, S., Hackl-Herrwerth, A., Leucht, S., Vecchi, S., Srisurapanont, M., & Soyka, M. (2010). Opioid antagonists for alcohol dependence. Cochrane database of systematic reviews, (12).
- 10. Kranzler, H. R., Tennen, H., Armeli, S., Chan, G., Covault, J., Arias, A., & Oncken, C. (2009). Targeted naltrexone for problem drinkers. Journal of clinical psychopharmacology, 29(4), 350-357.
- 11. Kalk, N. J., & Lingford-Hughes, A. R. (2014). The clinical pharmacology of acamprosate. British journal of clinical pharmacology, 77(2), 315-323.

References (3 of 11)

- Spanagel, R., Vengeliene, V., Jandeleit, B., Fischer, W. N., Grindstaff, K., Zhang, X., ... & Kiefer, F. (2014). Acamprosate produces its anti-relapse effects via calcium. Neuropsychopharmacology, 39(4), 783-791.
- Mann, K., Lehert, P., & Morgan, M. Y. (2004). The efficacy of acamprosate in the maintenance of abstinence in alcohol-dependent individuals: results of a meta-analysis. Alcoholism: Clinical and Experimental Research, 28(1), 51-63.
- 14. Rösner, S., Hackl-Herrwerth, A., Leucht, S., Lehert, P., Vecchi, S., & Soyka, M. (2010). Acamprosate for alcohol dependence. Cochrane Database of Systematic Reviews, (9).
- 15. Verheul, R., Lehert, P., Geerlings, P. J., Koeter, M. W., & van den Brink, W. (2005). Predictors of acamprosate efficacy: results from a pooled analysis of seven European trials including 1485 alcohol-dependent patients. Psychopharmacology, 178, 167-173.
- Ericson, M., Löf, E., Stomberg, R., & Söderpalm, B. (2009). The smoking cessation medication varenicline attenuates alcohol and nicotine interactions in the rat mesolimbic dopamine system. Journal of Pharmacology and Experimental Therapeutics, 329(1), 225-230.

References (4 of 11)

- McKee, S. A., Harrison, E. L., O'Malley, S. S., Krishnan-Sarin, S., Shi, J., Tetrault, J. M., ... & Balchunas, E. (2009). Varenicline reduces alcohol self-administration in heavy-drinking smokers. Biological psychiatry, 66(2), 185-190.
- 18. Mitchell, J. M., Teague, C. H., Kayser, A. S., Bartlett, S. E., & Fields, H. L. (2012). Varenicline decreases alcohol consumption in heavy-drinking smokers. Psychopharmacology, 223, 299-306.
- 19. Litten, R. Z., Ryan, M. L., Fertig, J. B., Falk, D. E., Johnson, B., Dunn, K. E., ... & Stout, R. (2013). A double-blind, placebo-controlled trial assessing the efficacy of varenicline tartrate for alcohol dependence. Journal of addiction medicine, 7(4), 277-286.
- 20. Benowitz, N. L. 2003. Cigarette smoking and cardiovascular disease: Pathophysiology and implications for treatment. Progress in Cardiovascular Diseases 46(1):91-111.
- Eliasson B. (2003). Cigarette smoking and diabetes. Progress in cardiovascular diseases, 45(5), 405–413. <u>https://doi.org/10.1053/pcad.2003.00103</u>
- 22. Puranik, R., & Celermajer, D. S. (2003). Smoking and endothelial function. Progress in cardiovascular diseases, 45(6), 443-458.

References (5 of 11)

- 23. Cohen, G., Roux, J. C., Grailhe, R., Malcolm, G., Changeux, J. P., & Lagercrantz, H. (2005). Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function. Proceedings of the National Academy of Sciences, 102(10), 3817-3821.
- 24. Thacker, E. L., O'reilly, E. J., Weisskopf, M. G., Chen, H., Schwarzschild, M. A., McCullough, M. L., ...
 & Ascherio, A. (2007). Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology, 68(10), 764-768.
- 25. Martin, L. F., & Freedman, R. (2007). Schizophrenia and the α7 nicotinic acetylcholine receptor. International review of neurobiology, 78, 225-246.
- Stead, L. F., Perera, R., Bullen, C., Mant, D., Hartmann-Boyce, J., Cahill, K., & Lancaster, T. (2012). Nicotine replacement therapy for smoking cessation. Cochrane database of systematic reviews, (11).
- Cahill, K., Stevens, S., Perera, R., & Lancaster, T. (2013). Pharmacological interventions for smoking cessation: an overview and network meta-analysis. The Cochrane database of systematic reviews, 2013(5), CD009329. https://doi.org/10.1002/14651858.CD009329.pub2

References (6 of 11)

- 28. National Institute on Drug Abuse. (2010). The brain: Understanding neurobiology through the study of addiction. The NIH Curriculum Supplement Series. https://archives.nida.nih.gov/sites/default/files/the_brain_understanding_neurobiology_through_the_st udy_of_addiction.pdf
- Cahill, K., Stevens, S., Perera, R., & Lancaster, T. (2013). Pharmacological interventions for smoking cessation: an overview and network meta-analysis. The Cochrane database of systematic reviews, 2013(5), CD009329. <u>https://doi.org/10.1002/14651858.CD009329.pub2</u>
- 30. Tonstad, S. (2006). Smoking cessation efficacy and safety of varenicline, an α4β2 nicotinic receptor partial agonist. Journal of Cardiovascular Nursing, 21(6), 433-436.
- Koegelenberg, C. F., Noor, F., Bateman, E. D., van Zyl-Smit, R. N., Bruning, A., O'Brien, J. A., ... & Irusen, E. M. (2014). Efficacy of varenicline combined with nicotine replacement therapy vs varenicline alone for smoking cessation: a randomized clinical trial. Jama, 312(2), 155-161.
- 32. Thomas, K. H., Martin, R. M., Knipe, D. W., Higgins, J. P., & Gunnell, D. (2015). Risk of neuropsychiatric adverse events associated with varenicline: systematic review and meta-analysis. bmj, 350.

References (7 of 11)

- 33. Hajek, P., McRobbie, H., & Myers, K. (2013). Efficacy of cytisine in helping smokers quit: systematic review and meta-analysis. Thorax, 68(11), 1037-1042.
- 34. Slemmer, J. E., Martin, B. R., & Damaj, M. I. (2000). Bupropion is a nicotinic antagonist. Journal of Pharmacology and Experimental Therapeutics, 295(1), 321-327.
- 35. Hughes, J. R., Stead, L. F., Hartmann-Boyce, J., Cahill, K., & Lancaster, T. (2014). Antidepressants for smoking cessation. The Cochrane database of systematic reviews, 2014(1), CD000031. https://doi.org/10.1002/14651858.CD000031.pub4
- 36. Perkins, K. A. (1994). Issues in the prevention of weight gain after smoking cessation. Annals of Behavioral Medicine, 16(1), 46-52.
- Hughes, J. R., Stead, L. F., Hartmann-Boyce, J., Cahill, K., & Lancaster, T. (2014). Antidepressants for smoking cessation. The Cochrane database of systematic reviews, 2014(1), CD000031. <u>https://doi.org/10.1002/14651858.CD000031.pub4</u>
- 38. Etter, J. F., Bullen, C., Flouris, A. D., Laugesen, M., & Eissenberg, T. (2011). Electronic nicotine delivery systems: a research agenda. Tobacco control, 20(3), 243-248.

References (8 of 11)

- Brown, C. J., & Cheng, J. M. (2014). Electronic cigarettes: product characterisation and design considerations. Tobacco control, 23 Suppl 2(Suppl 2), ii4–ii10. <u>https://doi.org/10.1136/tobaccocontrol-2013-051476</u>
- 40. Soneji, S. S., Sung, H. Y., Primack, B. A., Pierce, J. P., & Sargent, J. D. (2018). Quantifying population-level health benefits and harms of e-cigarette use in the United States. PloS one, 13(3), e0193328. https://doi.org/10.1371/journal.pone.0193328
- 41. Dempsey, D. A., & Benowitz, N. L. (2001). Risks and benefits of nicotine to aid smoking cessation in pregnancy. Drug safety, 24, 277-322.
- 42. Quinn, V. P., Mullen, P. D., & Ershoff, D. H. (1991). Women who stop smoking spontaneously prior to prenatal care and predictors of relapse before delivery. Addictive behaviors, 16(1-2), 29-40.
- 43. Budney, A. J., & Moore, B. A. (2002). Development and consequences of cannabis dependence. Journal of clinical pharmacology, 42(S1), 28S–33S. https://doi.org/10.1002/j.1552-4604.2002.tb06000.x

References (9 of 11)

- 44. Copeland, J., Swift, W., & Rees, V. (2001). Clinical profile of participants in a brief intervention program for cannabis use disorder. Journal of substance abuse treatment, 20(1), 45–52. https://doi.org/10.1016/s0740-5472(00)00148-3
- 45. Stephens, R. S., Roffman, R. A., & Simpson, E. E. (1993). Adult marijuana users seeking treatment. Journal of consulting and clinical psychology, 61(6), 1100–1104. https://doi.org/10.1037//0022-006x.61.6.1100
- Hasin, D. S., Saha, T. D., Kerridge, B. T., Goldstein, R. B., Chou, S. P., Zhang, H., Jung, J., Pickering, R. P., Ruan, W. J., Smith, S. M., Huang, B., & Grant, B. F. (2015). Prevalence of Marijuana Use Disorders in the United States Between 2001-2002 and 2012-2013. JAMA psychiatry, 72(12), 1235–1242. <u>https://doi.org/10.1001/jamapsychiatry.2015.1858</u>
- 47. Dennis M, Godley SH, Diamond G, et al. The Cannabis Youth Treatment (CYT) Study: main findings from two randomized trials. J Subst Abuse Treat. 2004;27(3):197-213. doi:10.1016/j.jsat.2003.09.005
- 48. Budney, A. J., Vandrey, R. G., Hughes, J. R., Moore, B. A., & Bahrenburg, B. (2007). Oral delta-9tetrahydrocannabinol suppresses cannabis withdrawal symptoms. Drug and alcohol dependence, 86(1), 22-29.

References (10 of 11)

- 49. Vandrey, R., Stitzer, M. L., Mintzer, M. Z., Huestis, M. A., Murray, J. A., & Lee, D. (2013). The dose effects of short-term dronabinol (oral THC) maintenance in daily cannabis users. Drug and alcohol dependence, 128(1-2), 64-70.
- Haney, M., Hart, C. L., Vosburg, S. K., Comer, S. D., Reed, S. C., & Foltin, R. W. (2008). Effects of THC and lofexidine in a human laboratory model of marijuana withdrawal and relapse. Psychopharmacology, 197(1), 157–168. https://doi.org/10.1007/s00213-007-1020-8
- Hart, C. L., Haney, M., Ward, A. S., Fischman, M. W., & Foltin, R. W. (2002). Effects of oral THC maintenance on smoked marijuana self-administration. Drug and alcohol dependence, 67(3), 301-309.
- Gray, K. M., Carpenter, M. J., Baker, N. L., DeSantis, S. M., Kryway, E., Hartwell, K. J., ... & Brady, K. T. (2012). A double-blind randomized controlled trial of N-acetylcysteine in cannabis-dependent adolescents. American Journal of Psychiatry, 169(8), 805-812.
- 53. Hedegaard H, Miniño AM, Warner M. Drug overdose deaths in the United States, 1999–2019. NCHS Data Brief, no 394. Hyattsville, MD: National Center for Health Statistics. 2020.

References (11 of 11)

- 54. Gerry, C. (2022, September 27). Drugs, data, and public policy: What can science teach lawmakers about the opioid crisis?. Science in the News. https://sitn.hms.harvard.edu/flash/2016/drugs-data-public-policy-can-science-teach-lawmakers-opioid-crisis/
- 55. Murray, N., & Swegan, W. (1958). To Tranquilize or Not To Tranquilize. Quarterly Journal of Studies on Alcohol, 19(3), 509-510.

Additional support from PRISM

Advanced training

- <u>https://micmt-cares.org/upcoming-trainings</u>
 - Implementing Collaborative Care with Perinatal Patients
 - Implementing Collaborative Care with Adolescent and Pediatric Patients
 - Treating Substance Use in Collaborative Care Settings

Upcoming webinars

<u>https://micmt-cares.org/events?type%5B4639%5D=4639</u>

BHCM monthly discussion group

• 3rd Thursday of the month from 12:00pm–1:00pm ET

Ongoing implementation support

• Discuss scheduling with your Implementation Specialist

CEU and CME reminders

CEU

- Allow up to 24 hours to receive the evaluation e-mail from MICMT
- Follow the link in the email to complete the evaluation within 5 business days

CME

- Login to your account at MiCME at <u>https://micme.medicine.umich.ed</u> <u>u/</u>
- Attendance must be registered by July 8, 2024

Contact us

PRISM-Inquiries@umich.edu

